
VCS One Commerce

Integration Guide

Step-by-Step Setup & Integration Instructions

Getting Started

Prerequisites and Requirements

Before starting integration, ensure you have the necessary infrastructure and access.

Development Environment: Node.js 18+ or Python 3.11+, Git, modern code editor

API Access: VCS One Commerce account with admin privileges and API key generation

Backend Services: PostgreSQL 13+ database, Redis 6+ for caching and sessions

SSL Certificates: Valid SSL certificate for HTTPS webhook endpoints

Payment Testing: Stripe/PayPal sandbox accounts for payment integration testing

Domain: Configured domain or subdomain for storefront deployment

Account Setup

Create your VCS One Commerce account and configure initial settings.

Sign up at https://vcsmy.com with business email and organization details

Verify email address and complete business profile

Configure initial tenant settings: default currency, timezone, legal entity

Set up admin user credentials and enable multi-factor authentication

Access admin dashboard at https://vcsmy.com/commerce/admin

API Key Generation & Development Environment Setup

Generate API credentials and set up your development environment.

API Keys: Navigate to Settings → API Keys → Create New Key

Key Types: Read-only, Read-Write, Admin keys with IP whitelisting

Secret Storage: Store API keys securely in environment variables, never commit to version control

Key Rotation: Establish rotation schedule (recommended: every 90 days)

Testing Sandbox: Enable test mode for safe experimentation without production impact

Development Environment Setup

Install SDK: npm install @vcs-commerce/sdk or pip install vcs-commerce-sdk

Configure .env file with API_KEY, API_URL, and database connection strings

Run SDK initialization script to create workspace and test connection

Clone example repository: git clone github.com/vcs-platforms/commerce-examples

Start local development server with hot reload enabled

Testing Sandbox Access

Use sandbox environment for integration testing without affecting production data.

Enable sandbox mode in API configuration: api.useSandbox(true)

Use sandbox API endpoint: api-sandbox.vcsmy.com

Test with sample data: products, customers, payment methods provided in SDK

Validate API responses and error handling using test scenarios

Review sandbox logs and debugging output for troubleshooting

Quick Start Integration

5-Minute Setup Walkthrough

Get up and running with a basic integration in 5 minutes.

Step 1: Initialize Project

npm init -y npm install @vcs-commerce/sdk

Step 2: Configure SDK

import { VCSCommerce } from '@vcs-commerce/sdk'; const commerce = new VCSCommerce({ apiKey:
process.env.VCS_API_KEY, environment: 'sandbox' });

Step 3: Fetch Products

const products = await commerce.products.list({ limit: 20, isActive: true });

Basic Product Catalog Integration

Connect your product catalog to VCS One Commerce.

Product Import: Bulk import products via CSV or JSON API endpoints

Category Setup: Create category hierarchy and assign products to categories

Variant Configuration: Define product variants (size, color, material)

Inventory Sync: Synchronize stock levels from your inventory system

Image Upload: Upload product images via media API with CDN hosting

Simple Checkout Flow & First API Calls

Implement a basic checkout process.

Add to Cart

const cart = await commerce.cart.create({ items: [{ productId: 'prod_123', variantId: 'var_456',
quantity: 2 }] });

Calculate Tax & Shipping

const quote = await commerce.checkout.calculateTotal(cart.id, { shippingMethod: 'standard',
destination: { country: 'US', state: 'CA' } });

Process Payment

const order = await commerce.orders.create({ cartId: cart.id, payment: { method: 'stripe',
paymentIntentId: paymentIntent.id } });

Testing Checklist
✓ API authentication successful

✓ Product catalog loads correctly

✓ Cart creation and updates work

✓ Tax calculation accurate

✓ Shipping costs calculated

✓ Payment processing functional

✓ Order confirmation delivered

✓ Webhook events received

Advanced Integrations

Payment Gateway Integration

Connect your preferred payment processors for secure transaction handling.

Stripe Integration

Create Stripe Account: Sign up at stripe.com and obtain API keys

Install SDK: npm install stripe

Configure Webhooks: Register webhook endpoint in Stripe dashboard

Test Payments: Use test cards (4242 4242 4242 4242) for sandbox testing

Stripe Setup Example

import Stripe from 'stripe'; const stripe = new Stripe(process.env.STRIPE_SECRET_KEY); const
paymentIntent = await stripe.paymentIntents.create({ amount: totalAmount, currency: 'usd', metadata:
{ orderId: order.id } });

Webhook Configuration

Register webhook URL in Stripe dashboard: https://yourdomain.com/webhooks/stripe

Verify webhook signature to ensure authenticity

Handle payment_intent.succeeded and payment_intent.failed events

Update order status in VCS One Commerce based on payment status

PayPal Integration

Create PayPal Business account and obtain client ID and secret

Install SDK: npm install @paypal/checkout-server-sdk

Configure PayPal REST API credentials

Set up return/cancel URLs for checkout flow

Testing Procedures

Use PayPal sandbox accounts for development testing

Test successful payment flow and cancellation scenarios

Validate webhook processing and event handling

Perform end-to-end checkout with real payment methods

Monitor error logs and implement retry logic for failed transactions

Shipping Integration

Integrate with shipping carriers for rate calculation and label generation.

DHL Integration

Register for DHL API access and obtain API credentials

Install DHL Express SDK or use REST API directly

Configure service codes (Express, Economy) and delivery options

Implement rate quotation API for real-time shipping costs

Shippo Integration

Sign up for Shippo account and get API key

Install Shippo SDK: npm install shippo

Configure carrier accounts (USPS, FedEx, UPS) in Shippo dashboard

Use multi-carrier rate shopping for cost optimization

Tracking Integration & Label Generation

Set up webhook notifications for shipment status updates

Poll carrier tracking APIs for real-time shipment status

Display tracking information in customer order portal

Generate shipping labels via API with print-ready PDF

Automated customs documentation for international shipments

Headless Storefront Setup

Next.js Integration Example

Build a modern storefront using Next.js with server-side rendering.

Project Setup

npx create-next-app@latest commerce-storefront cd commerce-storefront npm install @vcs-commerce/sdk
npm install @vcs-commerce/ui-components

Product Listing Page

import { getProducts } from '@/lib/commerce'; export async function getServerSideProps() { const
products = await getProducts({ limit: 20 }); return { props: { products } }; } export default
function Products({ products }) { return ({products.map(product => ())}); }

React Components Setup

Install UI library: npm install @vcs-commerce/ui-components tailwindcss

Import pre-built components: ProductCard, Cart, Checkout forms

Customize styling with Tailwind CSS classes or theme configuration

Implement responsive design with mobile-first approach

Add loading states and error boundaries for better UX

Shopping Cart Implementation

Create cart context for state management across components

Implement add/remove/update quantity functionality

Persist cart in localStorage for guest users

Sync cart with customer account for logged-in users

Display real-time cart totals with tax and shipping

Multi-Region Configuration

Adding New Regions

Expand your commerce operations to new geographic markets.

Region Selection: Add regions in Settings → Regions → New Region

Geographic Coverage: Specify countries, states/provinces for this region

Local Presence: Configure warehouses, fulfillment centers, return addresses

Shipping Zones: Define shipping zones with carrier-specific rates

Tax Configuration: Set up local tax rates, exemptions, and compliance rules

Currency Setup & Tax Configuration

Configure multi-currency support and tax compliance.

Currency Setup: Enable currencies: USD, EUR, GBP, JPY with conversion rates

Exchange Rates: Configure auto-sync with forex providers (XE, OANDA)

Rounding Rules: Define currency-specific rounding (e.g., JPY: no decimals)

Tax Configuration: Upload tax tables for VAT, GST, sales tax by jurisdiction

Incoterms: Set default incoterms (DDP, DAP, CIF) for international orders

Compliance: Enable automatic tax calculation with GeoIP detection

Localization Settings & AI Localization Tuning

Adapt your store for local markets.

Languages: Enable languages: English, Chinese, Japanese, Spanish with RTL support

Content Translation: Upload translations or use AI-powered translation

Cultural Adaptation: Adjust imagery, colors, layouts for cultural preferences

Payment Methods: Enable local payment methods (Alipay, GrabPay, Klarna)

AI Localization Tuning: Train AI models on regional preferences and behavior

A/B Testing: Test localization effectiveness with conversion tracking

Vendor Marketplace Integration

Vendor Onboarding API

Automate vendor registration and verification.

Registration Endpoint: POST /api/v1/vendors/register

Business Information: Company name, tax ID, business license upload

KYC/KYB Verification: Automated identity and business verification

Bank Account Setup: Payment method configuration for payouts

Product Catalog Import: Bulk product upload via CSV or API

Onboarding Status: Track progress and requirements in vendor dashboard

SLA Management & Payout Configuration

Configure vendor performance expectations and payment processing.

Delivery SLAs: Define shipping time commitments by product category and region

Quality Standards: Set return rate thresholds, review rating requirements

Automated Alerts: Notify vendors when SLA violations are at risk

Payout Schedule: Configure weekly, bi-weekly, or monthly payout frequencies

Commission Structure: Define tiered commission rates based on sales volume

Multi-Currency Payouts: Support multiple payment methods and currencies

Multi-Vendor Product Catalog

Product Attribution: Link products to vendor accounts with ownership rights

Duplicate Management: Handle same products from multiple vendors with best price

Vendor Storefronts: Enable vendor-specific landing pages and product collections

Inventory Pooling: Aggregated inventory display across multiple vendors

Fulfillment Routing: Automated routing to vendor closest to customer

Ready to Build?

Support Resources & Community

• Documentation:
https://vcsmy.com/docs

• API Reference:
https://vcsmy.com/api

• Code Examples:
https://vcsmy.com/examples

• Community Forum:
https://vcsmy.com/community

• Email Support:
support@vcsmy.com

Value Creating Solutions Sdn Bhd

